| MadSci Network: Physics |
The Lorentz transformation for time IS the relativistic transformation for
time.
The Galilean principle of relativity says that it is not possible to
determine an 'absolute' velocity. That is, if you are in a space-craft
with no windows moving at a constant speed, you would have no idea what
speed you were moving at. Newton's laws obey this principle.
The problem came with the development of Maxwell's laws of
electromagnetism (in 1865). These showed a finite speed of light, c (=
300,000,000 metres per second). This, together with Newton's laws, would
imply that a car moving at speed u would see light to go at a speed c-u,
and thus, by the speed of light in your window-less space rocket, you
could determine your speed. However, experiments showed that this was not
the case.
Consider the following thought experiment, but when describing it, let us
assume that the principle of relativity holds. That is, the speed of light
is the same for all observers.
MIRROR _____ C___________________
/\ |
/ \ | - Height L
/ \ |
LIGHT / \ |_
SOURCE: A B: DETECTOR
Length AB=d, Length AC=h. Speed of light=c
If I was stationary (with respect to the apparatus) and watching this
experiment, you would see the light to move a distance of 2h between A and
B. Therefore, the time taken 9from my point of view) must be t=2h/c.
But what if you were moving in the direction AB at speed v, such that you
are at A when the light leaves A, and at B when the light reaches B. To
you, the experiment would look like this:
_____C_____
|
|
|
|
A,B
So, you see the light to move a distance of 2L. So your time must be
t'=2L/c.
But from the Pythagorean theorem, (d/2)^2+(L)^2=(h)^2.
BUT, t=2h/c => h=ct/2; t'=2L/c => L=ct'/2. And (from my point of view),
you were moving at speed v, and covered the distance d in time t,
therefore d=vt.
So, (d/2)^2+(L)^2=(h)^2 => (vt/2)^2+(ct'/2)^2=(ct/2)^2
=> (c^2-v^2)(t^2)=(ct')^2
=> t=1/[[1-(v/c)^2]^.5]
This is the Lorentz transformation for time. It was developed so that
Maxwell's laws remained unchanged when worked out for a moving observer,
i.e. so that the speed of light appears the same to all observers. It was
discovered by Lorentz, but Einstein is the one who decided to transform
Newton's Laws in this way. Mass, and distance, are also transformed in the
same way, yielding results that quite a few people have heard of, e.g. E=m
(c^2).
Let's try out this formula on a problem:
Imagine that an astronaut goes off at 0.8c, relative to the Earth, and
returns after 30 years have elapsed on the rocket. We have v=0.8c, and
t'=30 years. Therefore,
t= 30/[[1-(0.8)^2]^.5]
= 30/[1-0.64]^.5
=30/0.6
= 50 years have gone by on Earth!
Special relativity is quit difficult to get your head round (it made
Einstein's hair stand on end). Well done for trying. I reccommend the
following books:
'Introducing Einstein' (formerly 'Einstein for Beginners') by Joseph
Scwarz and Michael McGuiness.
'Six Not-So-Easy Pieces,' a collection of Feynman's brilliant lectures.
'E=mc^2, an Equation That Changed the World' (I can't remember who it's
by, but it is very good).
Try the links in the MadSci Library for more information on Physics.