MadSci Network: Physics |

Posted By:

Area of science:

ID:

Greetings!

Entropy is likely to be one of the most misunderstood and misused terms from physics. So I will first try to explain what entropy is, in simple terms. Unfortunately I will not be able to leave mathematics completely out of the game.

Entropy is, roughly speaking, a measure for our missing knowledge, or ignorance, about a system. There are numerous ways to translate this stetement into a more rigorous, mathematical form which can be useful in practice, and I will give two of those possibilities here. The first one is actually the most fundamental one, and all other definitions can be shown to be compatible with it.

- Entropy of a system can be defined as the number of
yes/no-questions one must ask to gain complete knowledge about the
system. For example, take a chessboard and throw a coin onto it. In
the worst case, another person (who didn't see the throw) has to ask
you six questions in order to know on which tile the coin has landed.
There is a formula which can tell you this number, and in which
you have to insert all the probabilities for the experiment to take
different ways (64 times 1/64, in our example, if the coin
can occupy any tile with equal probability).
This specific definition of entropy comes from information theory, but it was not the first one that had been conceived. In fact, physicists have discovered entropy first, which must be regarded as one of their greatest achievements. The following definition gives you the physicist's view about entropy, in the language of thermodynamics. This can be shown to be equivalent to the first definition, apart from numerical factors and an arbitrary choice of the point of zero entropy.

- Entropy of a thermodynamical system (like a gas at a certain temperature) is defined as the logarithm of the number of states the system may take while having a fixed energy. In the example of the gas, imagine the gas being inside a box of volume V. Each molecule can take a certain amount of space, and a lot of rearrangements can be made among the molecules without altering the overall energy. Now take the same gas, at the same temperature, but in a volume that is just V/2. Now there is much less space left for each molecule, and there are far less possibilities for rearrangement. In other words, our knowledge of the system has increased. Now reduce the volume further and further, and at zero volume we will know exactly where each molecule is, namely at one certain point. To reduce entropy we could as well lower the temperature, because `knowledge' does not only cover the positions but also the velocities of all the molecules. At absolute zero all molecular motion will have stopped (apart from quantum effects, which I will leave out of the game here). At the point where we know exactly where each molecule is and how fast it is moving, entropy is at its minimum.

Hope that helps,

Georg.

Try the links in the MadSci Library for more information on Physics.

MadSci Network, webadmin@www.madsci.org

© 1995-1998. All rights reserved.